Monday, 30 June 2014

ANALISIS REGRESI LINIER SEDERHANA DENGAN IBM SPSS 21

Dari contoh sebelumnya pada penghitungan manual regresi linier sederhana, maka dapat kita gunakan software statistik IBM SPSS 21 sebagai berikut :

Kasus masih sama,Sebuah penelitian terhadap batang pohon mahoni yang diambil delapan sampel acak dan akan diteliti apakah ada pengaruh diameter batang pohon dengan tinggi batang pohon. 

Langkah-langkah yang dilakukan :

1. Klik Start -> IBM SPSS 21

2. Pada Variable View input data seperti berikut ini :

3. Pada Data View input data seperti berikuti ini :

4. Klik Analyze -> Regression -> Linear

5. Pindahkan Variabel Tinggi Pohon ke kolom Dependent dan Variabel Diameter Batang Pohon ke kolom Independent.
Pada Method pilih Enter berarti analisis data setiap variabel dianalisis satu-satu.

6. Tandai beberapa item :
  • Estimates : untuk menentukan konstanta a dan b
  • Model Fit: untuk uji ketepatan model regresi linier
  • R Squared Change : untuk menentukan nilai R

  • Klik Continue


7. Pilih Options masukkan nilai taraf signifikansi dalam hal ini kita pilih 5% sehingga ketik 0,05 pada kolom Entry. Tandai Include Constant in Equation. 
Pada kolom ini brfungsi untuk uji-F, digunakan untuk melihat pengaruh variabel bebas X secara bersamaan terhadap variabel tak bebas Y. (Regresi Linear Berganda)
Pada Missing Values
  • Exclude cases listwise :hanya data yang valid untuk semua variabel yang ikut dianalisis
  • Exclude cases pairwise :menganalisis koefisien korelasi dan seluruh cases yang berharga valid dari dua variabel yang dikorelasikan.
  • Replace with mean : Semua data dianalisis dan untuk data yang kosong digantikan dengan rata-rata variabel tersebut.
Klik Continue

8. Output Analisis Regresi Linear Sederhana


Merupakan output dari method yang kita pilih yaitu Enter.
Dari output di atas diperoleh nilai koefisien determinasi R2 = 0,785 berarti sekitar 75,5% variasi dari diameter batang pohon mahoni dapat menjelaskan variasi dari variabel tinggi batang pohon mahoni. (cukup tinggi).

dan nilai korelasi R = 0,886. Artinya hubungan yang kuat antara variabel diameter batang pohon mahoni dengan variabel tinggi pohon mahoni. 

Pada Adjusted R Square diperoleh nilai  0,750 artinya sekitar 75% variasi yang terjadi pada tinggi pohon dapat dijelaskan oleh variabel diameter batang pohon mahoni dan sisanya dijelaskan oleh variabel lainnya.

Note : 
R Square dan Adjusted R Square sama-sama boleh digunakan bedanya adalah jika kita ingin menggeneralisasikan ke populasi maka gunakan Adjusted R Square,dan individu yang kita gunakan adalah dipilih secara acak, namun jika individu atau sampel non acak sebaiknya gunakan R Square. Pada ukuran sampel yang besar, nilai R Square dan Adjusted R Square akan mendekati nilai sama.


Pada kolom B adalah nilai konstanta dan koefisien persamaan regresi. Sehingga dari angka inilah kita dapat membentuk persamaan regresi.
(Constant) = -1,315
Diameter Batang Pohon Mahoni = 4,541
Jadi persamaan regresi yang diperoleh adalah :
Y' = -1,315 + 4,541 X

Dan untuk uji-t diambil dari kolom t dan sid pada variabel Diameter Batang Pohon Mahoni.

Hipotesis Uji :
Ho : b = 0
Ha : b ≠ 0

Taraf Signifikansi :
Pilih nilai a = 5%

Daerah Kritis :
Dengan nilai signifikansi 5% dan derajat bebas 6 maka diperoleh t-tabel = 2,447.

Statistik Uji :
Diperoleh t-hitung = 4,686 dan nilai p-value = 0,003

Keputusan :
Nilai t-hitung = 4,686 > t-tabel = 2,447 atau nilai p-value = 0,003 < 0,05.
Jadi Ho ditolak dan Ha diterima.

Kesimpulan :
Dengan signifikansi 5% diameter batang pohon mahoni berpengaruh terhadap tinggi pohon mahoni.

Note : 
Uji F pada regresi linear sederhana memberikan nilai signifikans yang sama dengan uji t, yaitu sebesar 0,03.
Namun pada regresi linear berganda akan berbeda. 



by MEYF










Reactions:

1 comment: